8.Electromagnetic waves
medium

$\frac{1}{{\sqrt {{\mu _0}{ \in _0}} }}$ નું મૂલ્ય તથા પારિમાણિક સૂત્ર જણાવો.

Option A
Option B
Option C
Option D

Solution

Solution is Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Standard 12
Physics

Similar Questions

માધ્યમના પ્રકાશીય ગુણધર્મો, તે માધ્યમની સાપેક્ષ પરમિટિવિટી $({ \in _r})$ અને સાપેક્ષ પરમિએબિલિટી $(\mu _r)$ વડે નક્કી થતા હોય છે, જેમ કે તેનો વક્રીભવનાંક, સૂત્ર $n = \sqrt {{ \in _r}{\mu _r}} $ વડે મળે છે. સામાન્યતઃ મોટાભાગના પ્રકાશીય માધ્યમો માટે , ${ \in _r} > 0$ અને $\mu _r> 0$ અને તેથી ${ \in _r}{\mu _r}$ નું વર્ગમૂળ લેતી વખતે મળતાં ધન અને ઋણ મૂલ્યો પૈકી ધન મૂલ્ય લેતાં $n > 0$ મળે છે. પરંતુ $1964$ માં V. Veselago નામના રશિયન વૈજ્ઞાનિકે $\in _r < 0$ તથા $u_r < 0$ ધરાવતા દ્રવ્યોના અસ્તિત્વ વિશે આગાહી કરી હતી. ત્યારબાદ “metamaterials” તરીકે ઓળખાતા આવા દ્રવ્યોનું ઉત્પાદન પ્રયોગશાળામાં કરીને તેમના પ્રકાશીય ગુણધર્મોનો પ્રાયોગિક અભ્યાસ કરવામાં આવી રહ્યો છે. આવા દ્રવ્યો માટે $n =  – \sqrt {{ \in _r}{\mu _r}} $ અત્રે આવા માધ્યમમાં પ્રકાશનું કિરણ દાખલ થાય છે ત્યારે તેમાંના પ્રકાશ સદિશોનું પ્રસરણ, મૂળ દિશાથી દૂરની તરફ થતું હોય છે.

ઉપરોક્ત વર્ણન પરથી સાબિત કરો કે,

$(i)$ આવા માધ્યમની સપાટી પર પ્રકાશનું કિરણ, (આપાત બિંદુમાંથી પસાર થતા આપાત સમતલમાં વિચારેલા ચાર ચરણ પૈકી) બીજા ચરણમાં રહીને $\theta $ ખૂણે આપાત થાય તો વક્રીભૂત કિરણ ત્રીજા ચરણમાં મળશે અને

$(ii)$ આ કિસ્સામાં પણ સ્નેલના નિયમનું પાલન તો થાય છે જ.

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.